What is the Best Way to Increase Efficiency in Precision Assembly?

نویسندگان

  • Sandra Koelemeijer Chollet
  • Fabien Bourgeois
  • Jacques Jacot
چکیده

Assembly of high precision products is often done manually. The main reasons are the complexity of automation and the production volumes that often remain small to medium. Watches, medical devices and sensors are some examples of products requiring high precision assembly: often expensive products with high margins. It is interesting to notice that achieving higher assembly yield allows for relative quick pay-back of equipment. This is also the reason why western European countries remain competitive in this field. In this paper, the important points to remember when selecting a solution to efficiently assist operators in their assembly tasks are highlighted. Good assistance should lead to higher yields, higher throughputs and better quality. One should take into account assembly processes and their difficulties, as well as production volume and economic profitability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy multi-objective assembly line balancing problem: Fuzzy mathematical programming approach

Design of assembly line is done in order to more coordinate a collection of some consecutive work stations for the aim of obtaining more productivity from the work stations and workers. The stations are arranged in a way to have a continuous and constant material flow. In this paper a multi-objective formulation for assembly line balancing is introduced. As a solution approach a two-step approa...

متن کامل

Process Capability Studies in an Automated Flexible Assembly Process: A Case Study in an Automotive Industry

Statistical Process Control (SPC) methods can significantly increase organizational efficiency if appropriately used. The primary goal of process capability studies is to obtain critical information about processes to render them even more effective. This paper proposes a comprehensive framework for proper implementation of SPC studies, including the design of the sampling procedure and interva...

متن کامل

A multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation

Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...

متن کامل

Multi-objective scheduling and assembly line balancing with resource constraint and cost uncertainty: A “box” set robust optimization

Assembly lines are flow-oriented production systems that are of great importance in the industrial production of standard, high-volume products and even more recently, they have become commonplace in producing low-volume custom products. The main goal of designers of these lines is to increase the efficiency of the system and therefore, the assembly line balancing to achieve an optimal system i...

متن کامل

Fuzzy Group Decision Making Approach for Ranking Work Stations Based on Physical Pressure

This paper proposes a Fuzzy Group Decision Making approach for ranking work stations based on physical pressure. Fuzzy group decision making approach allows experts to evaluate different ergonomic factors using linguistic terms such as very high, high, medium, low, very low, rather than precise numerical values. In this way, there is no need to measure parameters and evaluation can be easily ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006